SC520 Extra Software Programming Guide

Custom Property

1. KSPROPERTY CUSTOM XET GPIO_DIRECTION (940)
1. KSPROPERTY CUSTOM XET GPIO_DATA (941)

The property allows you to access SAA7160’s GPIO interface. The property
KSPROPERTY CUSTOM XET GPIO DIRECTION allows you to control its direction.
Here, writing 1 to bit enables this pin as output pin. Usually, the GPIO is

controlled by the first chipset in one board.
SUPPORT VALUE: 0 ~ 1 - INPUT ~ OUTPUT

The property KSPROPERTY CUSTOM XET GPIO DATA allows you to access GPIO’s
data.

SUPPORT VALUE: 0 ~ 1 - LOW ~ HIGH

EXAMPLE#01: TO DEFINE GPIO AS 8 OUTPUT PINS [0:7] AND 8 INPUT PINS [8:15].
AMESDK SET CUSTOM PROPERTY (hDev, 940, OxO0FF);

EXAMPLE#02: TO DEFINE GPIO AS 16 OUTPUT PINS [0:15] THEN PULL HIGH FOR ALL.
AMESDK SET CUSTOM PROPERTY (hDev, 940, OxFFFE);
AMESDK SET CUSTOM PROPERTY (hDev, 941, OxFFFE);

EXAMPLE#03: TO DEFINE GPIO AS 16 INPUT PINS [0:15] THEN READ DATA FROM IT.
AMESDK_SET CUSTOM PROPERTY (hDev, 940, 0x0000);
AMESDK_GET CUSTOM PROPERTY (hDev, 941, &GPIO);

2. KSPROPERTY CUSTOM GET ANALOG VIDEO RESOLUTION (210) (READ ONLY)
2. KSPROPERTY CUSTOM GET ANALOG VIDEO FRAME RATE (208) (READ ONLY)

Our driver can auto detect video format and can report the current input format
to your software. The both properties can help to obtain current format’s

resolution and frame rate. All supported formats are described in the table:

FORMAT RESOLUTION FRAME RATE
1920x1080p@30fps 0x07800438 30
1920x1080p@25fps 0x07800438 25
1920x1080p@24£fps 0x07800438 24
1920x10801@60fps 0x0780021C 60
1920x10801@50fps 0x0780021C 50
1280x720PR@60fps 0x050002D0 60
1280x720P@50£fps 0x050002D0 50
1280x720P@30fps 0x050002D0 30
1280x720P@25fps 0x050002D0 25
720x480PR60fps 0x02D0O01EO 60
720x576PR@50£fps 0x02D00240 50
720x48010@60fps 0x02D0O0O0FO0 60
720x57610@50fps 0x02D00120 50

Here, the resolution property can be described as below:
RESOLUTION = (WIDTH << 16) | (HEIGHT << 0)
EXAMPLE#01: GET CURRENT VIDEO FORMAT.

AMESDK GET CUSTOM PROPERTY (hDev, 210, &RESOLUTION) ;
AMESDK GET CUSTOM PROPERTY (hDev, 208, &FRAMERATE);

3. KSPROPERTY CUSTOM XET ANALOG_VIDEO SWITCH_ CHANNEL TABLE (206)

In default setting, our switching algorithm uses one averaged channel table
to control the channel switching sequence. The table size is 12 items length.
Every item can be 0, 1, 2 or 3 to correspond to its sub-channels. For example,
the split number is 4. The default switching channel table will be as { 0,
1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 }.

Now, you can control the switching table dynamically by our SDK. For example,
the table can be updated to { 0, 0, 1, 2, 0, O, 1, 2, 0, O, 1, 2 }. The total
20fps for every sub-channel will be changed as below:

CH#01: 10fps,

CH#02: 5fps,

CH#03: 5fps, and

CH#04: Ofps.

For another example, the table is { 0, 0, O, 1, 1, 1, 2, 2, 2, 3, 3, 3 }.

The result simulates one channel jumping effect.

Moreover, the table also can support single channel switching such as { 1,
i, 1,1, 1, 1, 1, 1, 1, 1, 1, 1 }. When the table is set, the switching mode
will auto be returned to real-time mode. So, by this table, the CH#02’s fps
will be up to 30fps.

EXAMPLE#01: DISABLE CH#03.
BYTE TABLE[12] = {0, 1, 3, 0, 1, 3, 0, 1, 3, 0, 1, 3 };
AMESDK_SET CUSTOM PROPERTY EX(hDev, 206, TABLE, 12);

EXAMPLE#02: CHANNEL JUMPING.
BYTE TABLE[12] = {0, O, O, 1, 1, 1, 2, 2, 2, 3, 3, 3 };
AMESDK_SET CUSTOM PROPERTY EX(hDev, 206, TABLE, 12);

EXAMPLE#03: GET CURRENT SWITCH CHANNEL TABLE.
BYTE TABLE[12];
AMESDK_GET_ CUSTOM PROPERTY EX(hDev, 206, TABLE, 12);

EXAMPLE#04: SINGLE CHANNEL OUTPUT.
BYTE TABLE[12] = { O, O, O, O, O, O, O, O, O, O, O, O };
AMESDK SET CUSTOM PROPERTY EX(hDev, 206, TABLE, 12);

8. Application Note for AMESDK GET LOCK()

Customer to use AMESDK GET LOCK, please notes it. If your card is N series,

the return value is described by 1 bit only. High is signal lock, and low

isunlock. If your card is D series, the return value will use 2bits to describe

both sub-channels’ status. If card is Q series, we will use 4 bits to describe

all sub-channels.

EXAMPLE#01: GET SC520N4 SIGNAL STATUS.

AMESDK GET LOCK(hDev[0], é&status[O
AMESDK GET LOCK(hDev[1], é&status[1
AMESDK GET LOCK(hDev[2], &status[2
AMESDK GET LOCK(hDev[3], &status[3

EXAMPLE#02: GET SC520D8 SIGNAL STATUS.

AMESDK GET LOCK(hDev[0], &status[O
AMESDK GET LOCK(hDev[1], &status[1
AMESDK GET LOCK(hDev[2], &status[2
AMESDK GET LOCK(hDev[3], &status[3

EXAMPLE#03: GET SC520Q16 SIGNAL STATUS.

AMESDK GET LOCK(hDev[0], &status[O
AMESDK GET LOCK(hDev[1], &status[1
AMESDK GET LOCK(hDev[2], &status[2
AMESDK GET LOCK(hDev[3], &status[3

SR T |

[SN T |

—_ ~— o~ ~— —_ — ~— ~—

—_ — o~ ~—

~e

~e

~e

~e

~e

~e

//
//
//
//

//
//
//
//

//
//
//
//

GET
GET
GET
GET

GET
GET
GET
GET

GET
GET
GET
GET

CHO1
CHOZ2
CHO3
CHO4

CHO1
CHO3
CHO5
CHO7

CHO1
CHOS
CHO9
CH13

STATUS
STATUS
STATUS
STATUS

~ CHOZ2
~ CHO4
~ CHO6
~ CHOS8

~ CHO4
~ CHOS8
~ CH12
~ CH16

STATUS
STATUS
STATUS
STATUS

STATUS
STATUS
STATUS
STATUS

5. Access Custom Property for DirectShow Developer

Customer uses DirectShow to develop software can bypass our SDK to access
SAAT7160 directly. All custom properties are implemented by IKsPropertySet

interface. The interface can be queried from our capture source filter.

EXAMPLE#01: GET CURRENT RESOLUTION AND FRAMERATE FOR INPUT.

=

static const GUID GUID KPS SA7160 = { 0xD1E5209F, 0x68FD, 0x4529, 0xBE, 0xEO, 0x5E, 0x7A, Ox1F, 0x47, 0x92, 0x1C };

solution, sizeof (ULONG));

m pKsPropertySet->Set (GUID KPS SA7160, 210, NULL, 0, &dwk

m pKsPropertySet->Set S SA7160, 208, NULL, 0, &dwFrameRate, sizeof (ULONG));

6. Application Note for DirectShow Developer

The developer who uses DirectShow to access our capture source filter need
check the frame size in the callback function of your SampleGrabber class.
If the frame size is 0 bytes, it means the frame is one bad frame. You should

drop it. More detail, please check with our engineer team directly.

